Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI.
نویسندگان
چکیده
PURPOSE Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. METHODS The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. RESULTS Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. CONCLUSIONS The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly.
منابع مشابه
Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing uni...
متن کاملAccelerated fMRI reconstruction using Matrix Completion with Sparse Recovery via Split Bregman
In this work, we propose a new method of accelerated functional MRI reconstruction, namely, Matrix Completion with Sparse Recovery (MCwSR). The proposed method combines low rank condition with transform domain sparsity for fMRI reconstruction and is solved using state-of-the-art Split Bregman algorithm. We compare results with state-of-the-art fMRI reconstruction algorithms. Experimental result...
متن کاملLow-Rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components
Purpose: To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. Theory and Methods: The L+S model is natural to represent dynamic MRI data. Incoherence between k-t space (acquisition) and the singular vectors of L and the sparse domain of S is req...
متن کاملLow-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components.
PURPOSE To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. THEORY AND METHODS The L+S model is natural to represent dynamic MRI data. Incoherence between k-t space (acquisition) and the singular vectors of L and the sparse domain of S is req...
متن کاملMulti-GPU Reconstruction of Dynamic Compressed Sensing MRI
Magnetic resonance imaging (MRI) is a widely used in-vivo imaging technique that is essential to the diagnosis of disease, but its longer acquisition time hinders its wide adaptation in time-critical applications, such as emergency diagnosis. Recent advances in compressed sensing (CS) research have provided promising theoretical insights to accelerate the MRI acquisition process, but CS reconst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 43 4 شماره
صفحات -
تاریخ انتشار 2016